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1. In NMC Office Note 45, we presented an analysis of the linear
computational stability of an explicit and an implicit formulation of
the linear gravitational modes admitted by a two-layer model atmosphere
expressed in Phillipst c-coordinate. The implicit method was un-
conditionally stable, whereas the explicit method displayed only
conditional stability. There were two critical phase speeds involved
in the explicit method's conditional stability criterion. For an
isothermal basic state, the larger phase speed was close to that of
the "Lamb wave." The second, slower mode, was referred to as the
"internal mode." The phase speed of the internal mode is commensurate
with the speed of advective winds found in the atmosphere, whereas the
"Lamb wave" phase speed is a good deal larger.

In practice, the implicit method requires the solution of a
diagnostic boundary-value (elliptic) equation for each mode of oscil-
lation which is treated implicitly. Thus, in the implicitly formu-
lated two-layer model, one finds it necessary to solve two such
boundary-value problems, at each time step. It is of some interest
to examine the possibility of reducing the number of boundary value
problems by utilizing a modified form of the semi-implicit method.
It is the purpose of this note, to present the results of an analysis
of the computational stability of such a modified scheme. The objective
of the modified formulation is to treat the "Lamb wave" implicitly and
the internal mode explicitly. The stability criterion, to be determined,
was expected to relate only to the speed of the internal mode.

2. The linearized differential equations are:

:u ::ap(1)t +x + px

Cy + P* + a p * + 0 (2)

p* + p* u + p* a (3)
t x C

Cp Tt - ap p*+ cp r=o 0(4)Pt t* P

Fr = T-Yp*/c (4a)

p* a a + p* a = RT (5)

a =p/p* = T/p* (5a)



In order to apply the modified semi-implicit method, we first use
eq. (3) in eq. (4) to get an alternative form of the thermodynamic
equation:

c T + a[ [p* u + P c a = 0 (6)p t x a p

Secondly, we note that the boundary conditions on 6 at a = 0
and al= 1 are = 0. This fact is used to replace (3) by two
equations:

.1
'p* Jf u do =0 (7) 

t 0 x
and

P* u + p ° 0 (8)ax aar

3. The modified semi-implicit scheme is formalized by indicating
the temporal discretization of the differential equations :

n+l n'l-'o(n+l 1-)
un+ l

- un- 1 + At[ n+ + ~x + a (p*n++ P*n-I)] = 0 (9)
x x x

n+l + n+ pn-I p- an4 +; ~+)(p* +p* + 2p* = 0 (10)
n+i n- -* Pn+

p*n+l_ p* + p* At f (u +un-l ) da = 0 (11)
0 x x

P* (un + n) = 0 (12)
ax aat

c (Tn+1 Tn- l) + 2At a a[p* un + p* + cp1 2At .n = 0 (13)
Cp

nnp* n + pn a = RTn (14)

The basic idea formalized in eqs. (9-14) is the separation and
different treatment of the "external" and "internal"t modes of gravi-
tational oscillation.
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4. We shall now separate the time and horizontal variation from the
vertical variation by writing for each dependent variable, 

q = q(o)eikx ;n . (15)

On the right hand of (15), q is a function of a alone. Stability
requires that the solutions (15) exist with | • 1. Upon substi-
tution, we get:

(~2, l)u + (ikAt)(.2+ 1)[ + a p*] = 0 

(~2+ 1)4 + W(% 2+ l)p* + 2 p* C e
+a -

(~2_ l)p* + (ikAt)p* (2+ 1) flu do
0

.iku +d =0
.a :O::

= 0

= 0O

(16)

(17)

(18)

(19)

0 = cp(12- l)T + 2(ikAt)p* a o u0. a
p

+(2At) [p* ar 6]

00p:* ~ ao + p* p = .
ci + P* a a T

(20)

(21)

5. Specialization to a two-layer model is now made,

a = O0.

_ 14a - 4 

:0 I 4d i= 0 4 I fI2
I ?, la -- -

i- a - :
____- - _? ~- 9i-, 2. : -P2 

1

-3
Ca - T …T 1

a = 1 : = 0

1 
I- 3

Pl = 4 P *

= 0

By introducing finite
variations, equations
form.

difference -approximations to model
(16) through (21) are put into the

the vertical
following
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(%2-1) I + (%2+1) ikAt½ 4 + (%2+1) ikAt RT r = 0

(22)
: (2-1)u2 + (2+1) ikAt ½q1+(2 ) + 1(2+1) ikAt RT2 r = 0

2(2+)2 + -2 (22+l)RT1 r + = 0 (23)+ (~2 +2 ) r + 2T
(23)

- (%2+1)~2 + (~2 + )~ 1 + 2(~2+1)-.RT2 r +p* ~ .ae= 02 1 RT 2 *~W 2

(W2 -1)rY+ (~2+1) ikAt ½ (U1 +u29= 0

(24)
ik(ul-u 2 ) -'4 = 0

(2-1) cp T1 + % 2 ikAt RT u 1u- CAt[4RZ,.-c r] = 0 (25)P1~~~~~ P, ~~~~(25)
(~2-1) c T + 2 ikAt RT2 u + %At[4RT 2+cp ] = 0

P2 2 2 p

p1 1
+ RT r = RTP~~~i I 1

1 :.~ 1 S~~~~~~~ ; :: (26)

P 2 2
+ RT2 r = RT2

The new variable, r, is defined to be

r = p*5w- pf: :(27a)

and
r = [2(T 1-T 2 ) - (c1+a2) p*/c ] (27b)

The system of ten equations in ten unknowns forms a homogeneous,
linear set of simultaneous equations. The existence of a non-trivial
solution is dependent upon the matrix of the coefficients having a
zero valued determinant.

Provided that C # Q, one may reduce the set of equations, by
elimination of T1, T2 and al', a 2, to the following six equations :

2(2-1) u1 + (C2+1) ikAt + 2(%2+1) ikAt RT1 r = 0

(28)
2(~2=1) u + (~2+1) ikAt (41+p 2) + 2(~2+1) ikAt R 2 r = 02 2) 
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-. 2C,21) r .+ C(2+1i ikAt Cul+2) = 0

12
4 - ik(ul u2 ) = 0

82 8ikAt c2 u1 + 3(~2~1)(~2+1) 1 - 2( )2(-1)2(2-1)RT r

+ 4 ~2At(R -4c)6 = 02

2 8 ikAt c2 u2 + (2-1)(2+1)(42-~1) - 2(~-1)2($2-1) RT2 r
22 2 12

+ 4 2(Rr+4c2)'a 0

We have introduced the parameters

2C1 RTI

K RT
2 2

K =R/c
p

The set of equations,

is the matrix,

A 0

0 A

iB iB

- ik ik

Eicl oi: 01

0 iC
2

(28), (29) and (30), may be put into matrix form,

L v = 0 (32)

iB

iB

0

0

3D

- D

0 iE 1

iB iE
2

0 A

0 0

0 : F1

D F
2

0

0

0

4

4G1

4G 2

(33)
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and v is the vector

U- 1

U2u2

92

r

The symbols used in (33) are

A = 2(~2-1)

C=8 S'C2 ~2
1

El= 2 zsRT (~2+1)

1 1

: 2 1

:~

-2~~~~f. RT ( DI) W ' 1)

G k E(Rr-8£ 4cC1 S 

defined

B

D
IX : C f

E
2

F 2

by

= £ (42+1)

= (c2-1) (;2+1)

= 8 s c2 ~2
2

= 2 £ RT (~2+l)
2

= -2 RT (C- )2 (221)

: k -1
(Rr+ 4 c 2 ) 2

The frequency equation, obtained by requiring the determinant of
L to vanish, has the form,

16({2-1) (G2+l) 2' {4 [R(R"2-_RT )(j2)(C2+1)2

+ Rr (RT2-RT1) (2 (42+1) (C-'J)2 + 4RF(c-c 2 ) ( 4)]jj
2

+ E2 [6(RT +RT2 ) (;2-1)2(j2+l) (2-.+l)

+' 12(c 2 +c2 ) (2) ( 2 -. 1 )2 - 4RF(~2)( 2- 1)2]
1 2 

+ 6[(2C-l)l]} = 0 (36)

6 :

(34)

(35)



It will be noted that the factors, (;t2l1) and (%2+1)2 are
irrelevant to our analysis. The equation (36) is simplified by
neglecting them. The expression, within the braces, is an eighth
degree polynomial in C with real-valued coefficients. The eight
roots will occur in conjugatezpairs. There are basically two modes
and, consequently, four physically relevant phase speeds. Our use
of centered differences to approximate the time derivatives gives
rise to an additional set of four phase speeds- the so-called compu-
tational modes. Each of these phase speeds is associated with one of
the eight roots of equation (36).

6. The evaluation of the roots of the frequency equation (36) was
made for an isothermal atmosphere at a temperature of 250°K. The
value'of p- was set at 1000 mb.

As indicated in the introduction, it was anticipated that a con-
ditional stability criterion would exist of the form,

kAt c*, e c i. (37)

'rom previous analysis (NMC Office Note No. 45*), it was expected
that c* would have a value of approximately 82 m sec- 1 when the
isothermal basic state was employed.

The parameter e in eq. (36) was allowed to have a set of values
denoted by an integer index, m :

_2 - T m
tm = 2i 10-5 (cm- 1 sec) . (38)'m 3.81

For each value of e (m = 1,2,4,6,8,10), we evaluated the left-hand
mside of the simplified form of eq. (36) over the complex C-plane,

including all of the unit circle.

For each such evaluation, we roughly approximated the loci of the
zeroes, or roots, of the polynomial. It was anticipated that the roots
would all lie on the unit circle, until the criterion (37) was
violated. If our estimate of ; c* was correct, the limiting value
should have occurred when ma= 8.6.

The results of our calculation are shown in figure 1. Only one
half of the zeros are indicated, the other half were the complex con-
jugates of those shown.

*The internal mode phase speed quoted is based upon zl = 2.95, a
correction of the value given in the reference.
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These results were not anticipated. The calculations have been
carefully checked and appear tobe correct.

The most significant point is the computational stability of the
calculation for m > 2. If the usual explicit stability criterion
were to apply to the fastest mode, c1l 310Qm sec l, the limiting
value of m would have been 2.

The first amplifying mode occurs when m > 4. Thus, the inte-
gration method may be stated to admit a time step, At, about two
times larger than that of an explicit method.

The results suggest, however, that the first instability is
associated with the fastest mode (Lamb wave), in spite of our
attempt to treat it implicitly.

Another disturbing aspect of the results is the striking lack
of symmetry about the imaginary axis. A comparison of the numerical
phase angles with those expected from analytic calculation indicates
that the physical-internal mode is estimated quite well, as is the
computational-"Lamb" mode.s Both the physical-"Lamb" mode and the
computational-internal mode are underestimated. The only explanation
which we can offer for this behavior is the "mixed character" of the
approximations used in the two forms of the continuity equation and
in the thermodynamic equation.

Although our results are ambiguous with respect to the merits of
the proposed modification of the implicit scheme, it is concluded
that further investigation of the method appears warranted.
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